免费发布产品 快速发布资讯

地震噪声特征分析及去噪技术

   2021-04-22 18690
核心提示:(一)地震资料噪声类型特征及传播规律渤海湾地区地表条件非农林地区植被茂盛,工业地区机械设备繁多,输电线路林立,公路干线较

(一)地震资料噪声类型特征及传播规律

渤海湾地区地表条件非农林地区植被茂盛,工业地区机械设备繁多,输电线路林立,公路干线较多;滩涂地区淤泥遍布,养殖业发达;浅海油区钻井平台较多。复杂的地表条件,使得采集的资料广泛发育各种类型的干扰波,严重影响后续的提高分辨率等工作及最终偏移成像,如何有效去除不同类型的噪声是提高资料品质的关键。

1.多次波

当地震波在地下传播时,若地下存在强反射界面,同时地面与空气的分界面波阻抗差很明显,是一个良好的反射界面,反射波可能在地下强反射界面及地表面之间震荡,从而形成多次波(图4-34)。多次波一般周期性较强,地震响应总和一次反射波相关,但其物理特性又和一次反射波不同。多次波的识别和压制正是利用了这一特性。

 

 

图4-34 长程多次波在单炮上、道集上、速度谱上的表现

 

2.面波

面波是地震勘探中常见的噪声,按传播路径可分为三种:分布在自由界面附近的瑞雷(Rayleigh)面波;在表面介质和覆盖层(通常指海水和海底)之间存在的SH型的勒夫(Love)面波;以及在深部两个均匀弹性层之间存在的类似瑞雷面波型的史通利(Stoneley)面波。

面波干扰特点小结:①能量、频率等属性随激发接收因素的变化而变化;②主频一般较低;③一般具有一定的相关性;④能量一般随着时间的推移和炮检距的增加而衰减。

3.空腔鸣震

由于潜水面位置抽取卤水晒盐,造成空洞问题,激发岩层孔隙度大,形成空腔鸣震干扰现象,其严重干扰浅、中层资料成像,且影响能量向下传播,造成深层反射信号能量弱。

空腔鸣震具有周期性和线性的特点。分布没有规律,与折射波、直达波、有效反射波混杂(图4-35),角度不同,速度不同。空腔鸣震模拟表明,在野外有空穴的地方施工时,震源最好在空穴之下激发,以得到质量较高的单炮记录。

4.大钻干扰

在油区进行地震采集时,钻头钻进时产生的大钻噪声必将与有效波发生干涉。大钻噪声传播类似于单程绕射波时距曲线,其极小点在钻头正上方。

 

 

图4-35 空腔鸣震干扰单炮记录

 

大钻噪声的传播特征如下:

(1)在不同域中其时距噪声分析关系表现不同,在共炮点道集上,表现为双曲线特征(图4-36),排列距钻机越远,相邻道间的旅行时间越长,视速度在不同排列上有所不同,变化较明显;

(2)在共中心点道集上,由于噪声到达各接收道的时间不同,大钻干扰噪声在CMP域表现为不规则噪声,如图4-37所示;

(3)在共检波点道集,由于各道接收干扰噪声的时间不同,大钻干扰噪声规律性不强。

 

 

图4-36 大钻噪声在单炮记录中的显示

 

 

 

图4-37 大钻噪声在CMP道集中的显示

 

5.50Hz工业干扰

在野外地震资料采隔声测量系统集过程中,如果地震测线上方有输电线路通过,相应的地震记录中就存在50Hz左右的强单频干扰波。该干扰波在地震记录整个或部分时间段具有很强能量,严重地影响资料信噪比。在渤海湾陆地区域村镇、厂矿较多,用电设备密集,造成高压线路广泛分布,使得所采集地震资料单炮记录中存在较为严重的50Hz工业干扰(图4-38),特别是工业发达地区,严重影响地震资料信噪比。

50Hz工业干扰特征:a.频率在50Hz左右;b.干扰能量贯穿接收道整个采集时间段,深层部分在能量补偿后变得更强,几乎将有效反射信号淹没;c.在单炮记录上分布广泛但无规律,但固定分布在靠近高压线的检波点上。

 

 

图4-38 具有严重的50Hz工业干扰的单炮

 

(二)叠前去噪方法的配套技术

1.多次波压制技术

目前地震资料去噪的难点是压制多次波,特别是层间多次波。目前来说,多次波压制属于世界性难题。其方法基本可分为两大类:一类是基于有效波和多次波之间差异的滤波方法(表4-9),另一类是基于波动理论的方法(表4-10)。

 

 

表4-9 基于有效波和多次波之间差异的多次波压制方法

 

 

 

表4-10 基于波动方程多次波压制方法

 

1)常规多次波压制方法:RaDOn变换法及改进

Radon变换一般包含三个步骤:Radon正变换、动校正量(或速度)切除和Radon反变换。消除多次波的方法是“减去法”。

用一次波校正后变换到Radon域,将一次波切出来,多次波的近道由于接近水平,能量分布与一次波相近,因而压制不理想;用多次波校正后变换到Radon域,将多次波切除,多次波的远道存在拉伸畸变,与近道不在同一直线上,因而远道压制不理想。为此,提出“两步法”压制多次波:首先用多次波作动校正,对多次波进行切除,为保护有效波,对多次波切除应尽可能小,此时多次波能量大部分被压制,只剩下远道的能量(图4-39中);然后用一次波校正,转换到Radon域后把一次波能量切出来,同样为保护有效波,对一次波切出应尽可能大(注:这时只剩下远道的干扰波,也可以对τ-p域内远离p0道的多次波进行动校正量自适应切除)。两步之后,多次被压制得很干净。但由于原始数据一次波和多次波的离散性,转换到Radon域能量发散,切除时难免对一次波有轻微损伤(图4-39右)。

从图4-39可以看出,该方法压制多次波效果非常理想,多次波基本被压制干净;不足之处就是,在压制多次波的同时难免会损失有效波能量。因此,该方法的适用范围是:如果目标是高精度的构造成像,对振幅的AVO变化特性要求不高,就可以采用该方法,会取得较好的多次波压制效果。

 

 

图4-39“两步法”线性Radon变换

 

2)保幅的多次波压制方法:剔除拟合法

常规压制多次波的方法,诸如Radon变换法,在压制多次波的同时不能保留振幅的AVO效应,也就是说不保幅。剔除拟合法(李庆忠,1995)可以解决这个问题——在压制多次波的同时保留振幅的AVO效应。其基本思路是:先将CDP道集用一次波的速度作动校正,将其拉平。以某t0时刻为准,把横向上各道的振幅值绘出来,如图4-40所示。一次波的AVO振幅是渐变的,可以用一个抛物线型的二次曲线表示为

A=Qx2+P (4-15)

式中,P为正入射纵波的振幅;x为炮检距;Q可称为抛物线曲率。

在图4-40中,多次波表现为在抛物线上的一个多余波形。这些多余波形离开抛物线的误差很大。因此,只要把这些大的误差点剔除,就能得到很少受多次波影响的拟合P值及Q值。所以,先采用最小二乘法拟合出一个P值和Q值,得到一条抛物线。然后计算每一个实际点离开抛物线的距离,得到误差ex。将误差大的点剔除,使它们不能参与下一次拟合。剔除一些道的点之后,可以再次用最小二乘法来拟合新的抛物线,得到P与Q值。剔除道是不固定的,它根据ex误差而定。如此,逐步拟合——剔除——拟合,直到剔除百分比等于15%或20%终止。

图4-41上图是有较强多次波的模型正演模拟记录NMO结果。一次波被拉平,多次波呈弯曲状。剔除拟合之后,结果如图4-41下图,从中可以看出无论是随机干扰,还是规则干扰,都被很好压制,一次波得到明显突显。

那么,这种方法对AVO特性的保留效果如何呢?从图4-42的对比分析可以看出,剔除拟合法在有效压制多次波和随机噪声的同时,保留了振幅AVO特性,为后续AVO研究工作奠定了基础。

2.面波压制技术

由前面对面波干扰的分析可知,面波的频率和速度较低,可以将资料转换到F-K域或F-x域,利用面波和有效波之间的频率和速度差异,将面波分离后,再转换到T-x域,就完成了面波压制。也可根据面波的能量远大于有效波这一特点,用区域异常噪声衰减技术来压制面波。在处理过程中,可采用多种方法结合,循序渐进地逐步压制,最大限度地保护有效信号。图4-43为F-x域相干噪声压制法(简称Fxcns,下同)压制面波前后单炮与剖面对比图。

 

 

图4-40 动校正后一次波的AVO振幅曲线

 

 

 

图4-41 含多次波的模型噪声压制前(上)后(下)CMP记录

 

 

 

图4-42 理想状态(上)、加噪声后(中)和剔除拟合后(下)某时刻振幅曲线图

 

3.空腔鸣震压制技术

渤海湾地区有些工区卤水池分布比较密集,由于抽水晒盐造成潜水面出现空洞现象,浅层鸣震非常严重,影响了中、浅层的成像,针对该干扰,试验了多种方法,包括Fxcns法、炮集域和道集域FK法、反假频法、预测反褶积、地表一致性反褶积方法等,针对这些方法的处理要点、优缺点和效果进行对比。最终确定一套合适的处理流程,这套处理流程对空腔鸣震压制效果理想,有效信号损失较小。

 

 

图4-43 原始剖面(上)及区域Fxcns滤波后剖面(下)

 

 

 

表4-11 针对空腔鸣震干扰试验方法及参数表

 

从图4-44可以看出,用空腔鸣震组合压制技术处理后,叠加剖面上的空腔鸣震干扰得到了很好压制,信噪比得到较大提高。

4.检波点域压制50Hz工业干扰

1)检波点域压制50Hz干扰方法原理

对实际资料分析发现:50Hz干扰源一般是固定的,而野外采集的接收点也是不变的,那么能产生50Hz干扰的干扰源所影响的范围就固定在一定的范围之内。根据这个原理,可以把资料从共炮点域转换到共检波点域,从而把50Hz强单频干扰分选出来进行单独分离。这样既分离出干扰波,又较好地保留有效信号,同时覆盖次数亦保持不变。

2)检波点域压制50Hz干扰效果

杭州爱华AWA6290L 绿色建筑隔声噪声检测设备

从图4-45可以看出,50Hz干扰分离前,剖面几乎被50Hz能量淹没,50Hz干扰分离后,剖面信噪比得到很大提高,成像非常清晰。

 

 

图4-44 压制空腔鸣前后叠加剖面对比

 

 

 

图4-45 50Hz干扰分离前(左)、后(右)剖面对比图

 

5.针对海上线性干扰的线性Radon变换压制方法

东部海上地震资料广泛存在线性干扰,且能量较强,对单炮和剖面的信噪比造成较大影响。由于该线性干扰频率高、倾角大,使得常用的F-K法容易出现假频,滤波效果欠佳。由Radon变换基本原理可知,线性Radon变换可以压制线性干扰。用该方法压制胜海2地震资料中的线性干扰,单炮和叠加剖面都取得了较好的效果,如图4-46所示。

 

 

图4-46 利用线性Radon变换压制含线性干扰剖面前(左)、后(右)对比

杭州爱华AWA6290L 绿色建筑隔声噪声检测设备

 

杭州爱华AWA6290L 绿色建筑隔声噪声检测设备
杭州爱华AWA6290L 绿色建筑隔声噪声检测设备

本文章内容 来源于 百度知道 ,如侵犯原作者权益请及时联系 2850832025@qq.com, 本网收到通知将在第一时间内删除本篇内容

 
标签: 噪声 特征 技术
反对 0举报 0 收藏 0 打赏 0评论 0
 
更多>同类销售文章
推荐产品
扫码加销售专员微信

气体检测仪

    13241854077
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  京ICP备10020141号-3